GCE Physics - PH5

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline \multirow[t]{12}{*}{1.} \& \multirow[t]{5}{*}{(a)

(b)} \& \& Correct α or β absorber (1) \&

\hline \& \& \& If drop after α absorber, then α present (1) (Alpha is stopped by paper - award 2 marks) \&

\hline \& \& \& If further drop after β absorber then β present (1) \&

\hline \& \& \& If (significant) count after β absorber then γ present or equivalent (1) \&

\hline \& \& (i) \& $19 \times 10^{15}[\mathrm{~Bq}]$ \& 1

\hline \& \multirow{7}{*}{(b)} \& (ii) \& Use of $\lambda=\frac{\ln 2}{T_{1 / 2}}$ (1) e.g. 0.0271 per day or $3.13 \times 10^{-7} \mathrm{~s}^{-1} \quad$ (1) Or $A=\frac{A_{0}}{2^{x}}$ quoted \&

\hline \& \& \& Or $A=\frac{A_{0}}{2^{x}}$ used \&

\hline \& \& \& Substitutions of values (ignore wrong units or factors of ten slips) (1) Or $x=14.26$ \&

\hline \& \& \& Correct answer $3.85 \times 10^{12}[\mathrm{~Bq}]$ (1) \& 4

\hline \& \& (iii) \& Attempt at using $A=\lambda N$ e.g. $76 \times 10^{15}=\lambda N(1)$ \&

\hline \& \& \& $N=2.4 \times 10^{23}(1)$ \& 2

\hline \& \& \& Question 1 Total \& [11]

\hline
\end{tabular}

Question		Marking details	Marks Available
3.	(a)	$Q=C V(1)$	
		212 [nC] (1)	2
	(b)	Taking logs e.g. $\ln Q=\ln Q_{0}-\frac{t}{c R}(1)$	
		$\text { Algebra } \quad \text { e.g. } R=-\frac{t}{\operatorname{cln} \frac{V}{V_{0}}}(1)$	
		Substitution of correct values (1) Answer $=1.36[\mathrm{M} \Omega](1)$	4
	(c)	$C=\frac{\varepsilon_{0} A}{d} \text { used e.g. rearranged (1) }$	
		$\mathrm{A}=x^{2}($ or implied $) \rightarrow C=\frac{\varepsilon_{0} x^{2}}{d}$ first two marks (1)	
		Answer = 1.49 [m] (1)	3
	(d)	Dielectric between plates	1
		Question 3 total	[10]

Question			Marking details	Marks Available
5.	(a)		The [induced] emf is proportional [or equal] to the rate of change [or cutting] of flux [linkage] or $\mathrm{d} B A N / \mathrm{d} t$ and terms defined Nearly correct statements award 1 out of 2 marks e.g. The emf is equal to the change of flux The current is proportional to the rate of change of flux The emf is proportional to the cutting of flux $B A N / t$ and terms defined Wrong statements get 0 The emf is equal/proportional to the flux linkage The current is equal to the rate of change of flux	2
			Lenz - the [induced] emf [or current] opposes [or tends to oppose etc.] the change [to which it is due]	1
		(i)	Clockwise (1) any 1 of FLHR(must have correct direction), FRHR, right hand grip rule (1)	2
		(ii)	Area increases \checkmark at an increasing rate \checkmark	2
			or cutting of flux \checkmark inside the loop \checkmark or $E=B l v \quad$ and l is increasing \checkmark	
		(iii)	$\begin{aligned} & V=\frac{B A N}{t} \text { and } t=\frac{20.1}{31}(=0.648 \mathrm{~s}) \quad \text { or } E=B l v \text { used }(1) \\ & A=\frac{1.8+2.9}{2} \times 20.1[=47.2] \quad \text { or mean } l=2.35[\mathrm{~m}](1) \end{aligned}$	
			$I=\frac{V}{R}$ Correct answer $\quad I=77[\mu \mathrm{~A}](1)$	4
			Question 5 Total	[11]

Question			Marking details	Marks Available
8.	(a)		Alternating current means an alternating B-field	
			[alternating] B-field transferred through core to secondary (1)	
			Changing flux inside the secondary coil [gives emf] (1) (accept flux cuts the secondary coil but not flux goes through secondary coil)	3
	(b)		(needs design \& loss method)	
			Low resistance wires to reduce heat dissipation from wires (or equivalent) (1)	
			Laminated core to reduce eddy currents (1)	
			Suitable core alloy (or silicon steel etc.) to reduce magnetisation losses (or hysteresis or to reduce leakage flux/stray field etc.) (1)	3
	(c)	(i)	$\omega=2 \pi f=24000\left[\mathrm{~s}^{-1}\right](1)$	
			$\omega L=88.7$ [Ω] (1)	
			$\frac{1}{\omega c}=88.7[\Omega] \text { (1) }$	3
		(ii)	Reactances are the same (accept impedances) (this can be stated regardless of a wrong answer to (i))	1
		(iii)	Answer $=6.5[\mathrm{~mA}]$ (allow ecf if full method followed through)	1
			(i.e. using $Z=\sqrt{\left(\omega L-\frac{1}{\omega C}\right)^{2}+R^{2} \text { etc.) }}$	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available

\hline \multirow[t]{10}{*}{8.} \& \multirow{10}{*}{(d)} \& \multirow[t]{4}{*}{(iv)

(i)} \& Ignore capacitance (or $\omega L-\frac{1}{\omega C}$ attempted) (1) \&

\hline \& \& \& Correct calculation for impedance e.g.. $\sqrt{887^{2}+2200^{2}}$ (1) \&

\hline \& \& \& $$
\text { Answer }=\frac{14.4}{2370}=6.1[\mathrm{~mA}](1)
$$ \& 3

\hline \& \& \& Attempt at an explanation at low and high frequency (1) \&

\hline \& \& \& Correct variation of X_{C} with frequency (i.e. large at low frequency or low at high frequency) (1) \&

\hline \& \& \& Correct division of pd with respect to frequency (e.g. at high frequency $R \gg X_{C}$ so $V_{\text {OUT }}$ is large or the opposite at low frequency) (1) \& 3

\hline \& \& (ii) \& Phasor diagram drawn or implied (1) V \&

\hline \& \& \& $X_{C}=R$ or $V_{C}=V_{R}$ either derived or quoted (implies diagram correct) (1) \&

\hline \& \& \& Answer $=154[\mathrm{~Hz}]$ (1) \&

\hline \& \& \& Question 8 Total \& [20]

\hline
\end{tabular}

Question			Marking details	Marks Available
9.	(a)	(i)(I)		2
		(II)	Prograde and motion on epicycle and deferent in same direction - or equivalent	1
		(III) (ii) (I)	Brightness or size Either $\frac{2 \pi}{T_{E / J}} \Delta t(1)$ represents angle swept out by Earth/Jupiter in time Δt (1) OR $\frac{\Delta t}{T_{E / J}}$ (1) represents fraction of a cycle swept out by Earth/Jupiter in time Δt Earth sweeps out extra angle 2π or one extra revolution (1)	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
		(II)	$\begin{aligned} & \frac{1.092}{1}-\frac{1.092}{T_{J}}=1(1) \\ & 1.092 T_{J}-1.092=1 T_{J} \\ & T_{J}=11.9 \text { [years] (1) } \end{aligned}$	2
	(b)	(i)	Nesting of: sphere of mercury / solid / sphere of Venus/solid (1) Didn't give quite correct orbital radii (1)	2

Question		Marking details	Marks Available
(c) (d)	(ii)	Mention of Plato or Pythagoras (1)	
		Nature based on mathematics (or equivalent) (1)	2
	(i)	Path of body acted on by central force [towards S] Accept path of planet. (1)	
		[Central] force applied at [just] these points (1)	2
	(ii)	Equal areas in equal times OR area swept out proportional to time	1
	(i)	Use of or by implication : (1) $\frac{v^{2}}{r g_{\text {surf }}} \operatorname{or} \frac{r \omega^{2}}{g_{\text {surf }}}=2.78 \times 10^{-4}(1)$	2
	(ii)	Attempt to evaluate $\left(\frac{r_{E}}{r_{M O}}\right)^{2}$ $=2.75 \times 10^{-4}(1)$	2
	(iii)	Either: spherically symmetric OR behaves as if all at centre	1
		Question total	[20]

Question			Marking details	Marks Available
10.	(a)	(i)	Diameter[accept width/thickness do not accept radius/area] \rightarrow micrometer/digital calliper [accept vernier calipers but not vernier only] (1) Original [accept natural] length \rightarrow metre rule (1)	2
		(ii)	Take (one set of) F and e from graph or Measure gradient $[$ or $=F / \Delta x]$ Accept gradient $=E A / l(1)$ Use value of $\pi d^{2} / 4$ or πr^{2} [explanation of how A is calculated required - can be awarded from (i)] (1)	
			Insert in relevant equations (1) $Y=\frac{F l_{0}}{A \Delta x}$ or $Y=\operatorname{grad} \times \frac{l_{0}}{A}$ etc.	3
	(b)	(i)	$\left[e_{\text {iron }}\right]=\frac{F l_{0}}{A E_{\text {iron }}}\left[\text { must show } \frac{F l_{0}}{A}\right]$	1
		(ii)	Attempt at $e_{\text {brass }}+e_{\text {iron }}$ (1)	
			Correct manipulation/algebra (1)	2
		(iii)	CSA calculated: $7.9 \times 10^{-7}\left[\mathrm{~m}^{2}\right]$ (1)	
			Substitution (ecf on CSA) (1)	
			$W=0.042[\mathrm{~J}]$ (1) $[-1$ for slip in power of $10 ;-1$ for use of diameter instead of radius]	
		(iv)	1.8 mm UNIT mark	1

Question		Marking details	Marks Available
(c)	(v)	Greater extension by brass [or smallest extension by iron] (1)	4
		$e \sim 1 / E$ (1) [link Young modulus to extension]	
		All other factors same for both wires (1)	
		Ratio 2:1 ($1.2 \mathrm{~mm}: 0.6 \mathrm{~mm}$) (1) [Full marks may be obtained by calculation only].	
	(i)	Melamine formaldehyde \rightarrow thermosetting (1)	
		Low density polyethylene \rightarrow thermoplastic (1)	2
	(ii)	Melamine brittle - low max strain (1)	
		or polythene not brittle - high max strain	
		Melamine stiffer - higher Young modulus (1)	2
		or polythene less stiff - lower Young modulus	
		[or accept low strain for high stress as explanation for stiffness of material]	
		Question total	[20]

Question		Marking details	Marks Available
(b)	(i)	$Z=$ Density x velocity [of ultrasound in the material] Must be in words as equation is given Do not accept speed of light for velocity	1
	(ii)	$Z_{1}=442$ and $Z_{2}=1700 \times 10$	
		$f=\operatorname{approx} 1 / 0.995(1)$	2
	(iii)	Almost all ultrasound reflected/ none able to enter the body (1)	
		Need for a coupling gel/medium (1)	2
(c)	(i)	Exposure: amount of radiation incident on the body (1) Do not accept: 'total radiation exposed to' as it is a rewrite of the question.	2
		absorbed dose: energy per unit mass absorbed by body (1)	
	(ii)	Dose equivalent $=$ dose x quality factor (1) Do not accept in terms of units	
		Quality factor depends on ionization or alpha $Q=20$ and gamma $Q=1(1)$	3
		Greater for alpha than gamma (1)	
		Question total	[20]

Question			Marking details	Marks Available
12.	(a)	(i)	Any 2 x (2) from Easily controllable Accept: no chain reaction (1) Because can switch off protons/hydrogen (1) OR No radioactive by-products or products are alpha particles (1) Any good relevant detail e.g. no storage costs for thousands of years Or alpha particles easily contained etc. (1) OR Fuel cheaper than fuel for fission (1) Detail e.g. per MJ output, H from the sea, no isotope enrichment needed, selling the He would help pay for the fuel (1) OR Fuel supplies would last longer than for fission (1) Detail: sensible remarks about U and H (1) $30000000 \times 300 \mathrm{keV}$ (in whatever units) (1) Conversion so that answer and reaction energy in the same units (i.e. 9 million MeV or equivalent e.g. 2.74×10^{-12} and $1.44 \times 10^{-6} \mathrm{~J}$) (1)	4
		(iii)	Comment implying far less energy out than in (1) $7 \times 1.66 \times 10^{-27} \text { seen (1) }$	3
		(iv)	Answer $\left[10^{16} / 7 \mathrm{u}\right]=8.6 \times 10^{41}(1)$ Answer (iii) x 17.1 MeV (or its J equivalent 2.74×10^{-12}) (1) Tolerate slips in powers of 10 ; answer mark will be lost. previous answer / 5×10^{20} (regardless of mixed units) (1)	2
				3

Question		Marking details	Marks Available
(b)	(i)	Area $=20 \mathrm{~mm} \times 20 \mathrm{~mm}$ or implied (1) Including side-faces loses the mark. Temperature difference $=150\left[{ }^{\circ} \mathrm{C}\right](1)$ Heat $=2040$ [W] (1) ecf on A, provided not a volume instead of an area	3
	(ii) (iii)	Work is done on the gas (1) Internal energy of the gas increases (no heat not required) (1) Freestanding mark i.e. accept if wrongly deduced, but only if link with temperature rise made. Efficiency $=1-\frac{T_{2}}{T_{1}} \quad$ accept $\frac{Q_{1}-Q_{2}}{Q_{1}}$ or $1-\frac{Q_{2}}{Q_{1}}(1)$ T_{1} is larger or $\frac{T_{2}}{T_{1}}$ is smaller Q_{1} is larger or $\frac{\frac{T_{1}}{Q_{2}}}{Q_{1}}$ is smaller but these need an explanation e.g. because temperature is higher. If done by putting temperatures into formula, they must be in K. (1) Efficiency is greater in equation (not an independent mark i.e. valid earlier argument needed, ignoring ${ }^{\circ} \mathrm{C}$ instead of K) (1) Question total	2 3 [20]

